Probabilistic Graphical Model of SPECT/MRI

نویسندگان

  • Stefano Pedemonte
  • Alexandre Bousse
  • Brian F. Hutton
  • Simon R. Arridge
  • Sébastien Ourselin
چکیده

The combination of PET and SPECT with MRI is an area of active research at present time and will enable new biological and pathological analysis tools for clinical applications and pre-clinical research. Image processing and reconstruction in multi-modal PET/MRI and SPECT/MRI poses new algorithmic and computational challenges. We investigate the use of Probabilistic Graphical Models (PGM) to construct a system model and to factorize the complex joint distribution that arises from the combination of the two imaging systems. A joint generative system model based on finite mixtures is proposed and the structural properties of the associated PGM are addressed in order to obtain an iterative algorithm for estimation of activity and multi-modal segmentation. In a SPECT/MRI digital phantom study, the proposed algorithm outperforms a well established method for multi-modal activity estimation in terms of bias/variance characteristics and identification of lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد مدل کلاس پنهان بیز در تعیین ارزش تشخیصی SPECT و MRI مغز جهت تشخیص حس بویایی بعد از تروما بدون حضور استاندارد طلایی

Abstract Introduction: The sense of smell gives unexplainable quality to human life. The  impairment In this sense will create lot of problems. MRI and SPECT are two way of olfactory evaluation that none of the both is not Gold standard. Bayesian latent class model is the correct way to determine the diagnostic value of these tests. Methods: MRI and SPECT tests performed on 63 patients e...

متن کامل

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

A Probabilistic Model for COPD Diagnosis and Phenotyping Using Bayesian Networks

Introduction: This research was meant to provide a model for COPD diagnosis and to classify the cases into phenotypes; General COPD, Chronic bronchitis, Emphysema, and the Asthmatic COPD using a Bayesian Network (BN). Methods: The model was constructed through developing the Bayesian Network structure and instantiating the parameters for each of the variables. In order to validate the achiev...

متن کامل

Accuracy of SPECT bone scintigraphy in diagnosis of meniscal tears

Introduction: Scintigraphy has been considered as a useful tool in the assessment of meniscal tears. Our objective was to assess the accuracy of single photon emission tomography (SPECT), using MRI as the gold standard, in the diagnosis of meniscal tears. Materials and Methods: Between January 2003 and February 2005, 45 patients were studied with SPECT and MRI. Results: The respective sen...

متن کامل

Brain Single Photon Emission Computed Tomography Scan (SPECT) and Functional MRI in Systemic Lupus Erythematosus Patients with Cognitive Dysfunction: A Systematic Review

Objective(s): Systemic lupus erythematosus (SLE) is an autoimmune disease with a wide range of clinical manifestations. Cognitive dysfunction is one of the manifestations that could present prior to the emergence of any other neuropsychiatric involvements in SLE. Cognitive dysfunction is a subtle condition occurring with ahigh frequency. However, there is no data on the correlation of cognitive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011